ENROULEUR A COURROIE

DOSSIER REPONSE DR 8/21

Dossier réponse

Compléter les feuilles ci-jointes, 9/21 à 21/21

Attention

Tout résultat chiffré doit être accompagné, si nécessaire, de son unité.

Tous les calculs permettant d'obtenir vos résultats devront apparaître sur votre feuille réponse pour avoir le maximum de points..

Le dossier réponse est composé de trois parties indépendantes.

1ère PARTIE	Question	Barême	Points attribués
	1	15 pts	
	2	14 pts	
	3	32 pts	
	4	6 pts	
	5	3 pts	
		S/s Total /70 Pts	

2ème PARTIE	Question	Barême	Points attribués
	6	6 pts	
	7	12 pts	
	8	4 pts	
	9	10 pts	
	10	3 pts	
	11	8 pts	
	12	7 pts	
	13	2 pts	
	14	10 pts	
	15	4 pts	
	16	3 pts	
	17	3 pts	
	18	3 pts	
	19	2 pts	
	20	3 pts	
	· · · · · · · · · · · · · · · · · · ·	S/s Total /80 Pts	

3ème PARTIE	Question	Barême	Points attribués
	1	35 pts	<u> </u>
	2	15 pts	
		S/s Total /50 Pts	

TOTAL / 200 Pts	

ENROULEUR A COURROIE

DOSSIER REPONSE DR 9/21

1ère PARTIE

Problématique

Suite à une demande client, on souhaite enrouler des bobines, sur un noyau de diamètre 530 mm.

Les solutions actuelles nous permettent seulement l'enroulement sur des noyaux de diamètres 508 et 610 mm.

Ce changement de diamètre est réalisé par un excentrique.

On demande au service maintenance d'assurer la mise en place de ce dispositif sur une butée escamotable pour permettre d'enrouler sur des noyaux de diamètre 530 mm.

Documents nécessaires : 4/21 ; 5/21 ; 6/21 ; 7/21

Question 1	/ 15 pts

Décrire les étapes successives qui permettent la mise en place de l'enrouleur autour d'un noyau d'un nouveau diamètre.

A partir des documents (2/21, 4/21, 5/21).

<u>Etapes</u>	<u>Mouvements</u>	Dispositif en mouvement	Actionneur
1	Rotation par rapport au point B	Bâti de l'enrouleur	A1
2	Rotation par rapport au point I	Levier de tension de courroie	
3		Вес	
4	Déplacement axial		
5	Rotation par rapport au point 0	Mandrin	

Question 2	/ 14 pts

Soit les classes d'équivalences suivantes :

$$\{A\} = \{1, 2, 3, 4, 5, 6, 7, 8\}$$
; $\{B\} = \{10, 11\}$;

$$\{D\} = \{37\}; \{E\} = \{38, 41, 43, 44, 45\}.$$

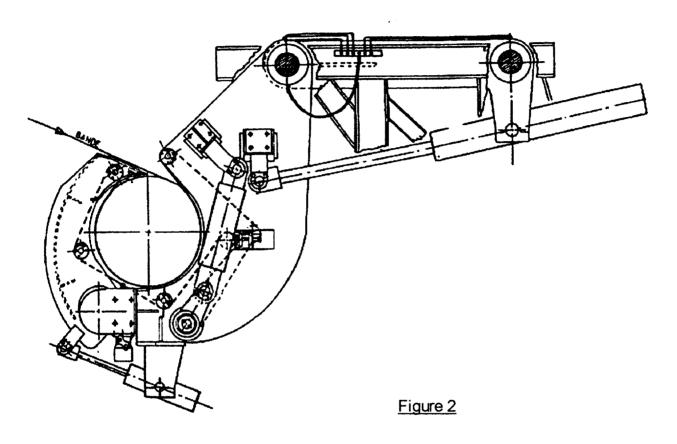
Compléter la classe d'équivalence {C}

L'ensemble excentrique se définit d'après la classe d'équivalence suivante :

Épreuve E1A	ENROULEUR A COURROIE	DOSSIER REPONSE DR 10/21
		

Question 3	/ 32 pts
<u> </u>	,

Compléter le tableau des liaisons entre les différentes classes d'équivalences (Tenir compte du repère Oxyz du plan 6/21, pour les mouvements)


Symboles						
	Noms		Pivot d'axe x			
		Tz	0			
	Translations	Тy	0			
Mouvements		Тх	0			
Mouve		Rz	0			
	Rotation	Ry	0			
		Rx	-			
Classes ou pièces en relation		{A} et {C}	{B} et {C}	(37) et {38}	{8} et {37}	

Question 4

Épreuve E1A	ENROULEUR A COURROIE	DOSSIER REPONSE DR 11/21

/ 6 pts

Colorier en rouge la courroie sur le document fourni (cf. figure 2)

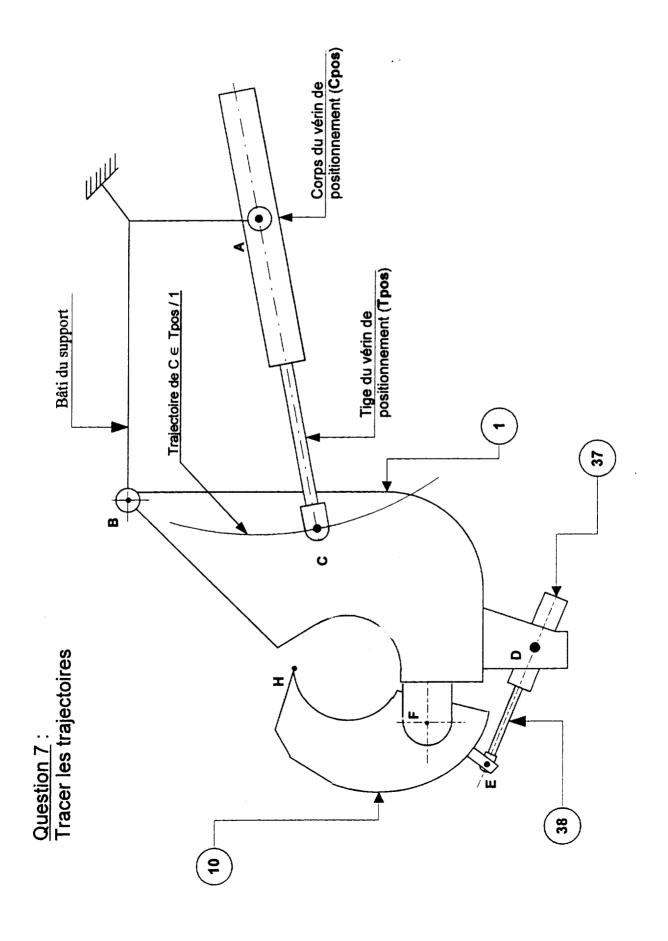
Question 5	/ 3 pts	
Donner la fonction de l'excentrique.		

2ºme PARTE

Le système étudié est modélisé sur les feuilles DR 13/21 et DR14/21
Les liaisons A,B, C, D, E, F sont des liaisons pivots dont les centres portent le même nom.
Les liaisons entre les corps et les tiges de vérins sont des liaisons pivots glissants
La vitesse de sortie de la tige du vérin de positionnement s'effectue à 0,1 m/s.
La vitesse de sortie de la tige du vérin de bec (38) s'effectue à 0,35 m/s.

But:

Déterminer la vitesse de l'extrémité du bec


Hypothèses:

- L' étude est réalisée dans le plan de symétrie,
- Le point H est l'extrémité du bec.
- La position étudiée concerne la fin de la mise en position de l'enrouleur.
- L'excentrique est en position (le point F est fixe).

Épreuve E1A	ENROULEUR A COURROIE	DOS	SSIER REPONSE DR 12/21
Question 6			/ 6 pts
Définir la nature	des mouvements :		
 Nature du mou vérin ; 	uvement de la tige du vérin de positionnement par rappo		·
- Nature du mou	vement de 1/Bâti support :		
	vement de 10/1 :		
Question 7			/ 12 pts
exemple: tro	rajectoires des points suivants : $ajectoire du point C \in Tpos/1 : Cercle de centre A et de ra ajectoire du point C \in Tpos/1 : ajectoire du point C \in Tpos/1$	•	
	ire du pointE∈10/1 :		
– trajecto	ire $du\ point E$ \in 38/37 :		
Tracer les t	rajectoires précédentes sur le document DR 13/21		
Question 8			/ 4 pts
Tracer le vecte	eur vitesse V _E de la tige sur le document DR 14/21.		
Question 9			/ 10 pts
	a sortie de la tige s'effectue à 0,35 m/s. vitesse angulaire ω _{10/1} . R x ω Rema	rque :	FC = 370 mm.
$\omega_{10/1} = 0$	rad/s.		
• En déduire On pose FH =	par le calcul, la vitesse linéaire de l'extrémité du bec au 750 mm.	point	Н.
V _h =	m/s.		
Question 10			/ 3 pts
Comparer les vite	esses V _H et V _E .		

ENROULEUR A COURROIE

DOSSIER REPONSE DR 13/21

ENROULEUR A COURROIE

DOSSIER REPONSE DR 14/21

37

38

FE = 370 mm FH = 750 mm

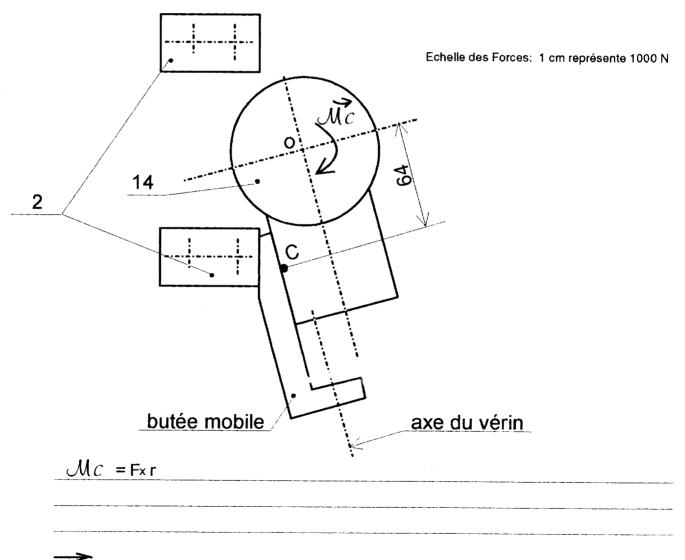
Échelle des vitesses : 1 cm ≡0,1m/s

Question 8: Étude de V_E 10/1 9

ENROULEUR A COURROIE

DOSSIER REPONSE DR 15/21

Le montage du dispositif terminé, on remarque:


- -que la butée mobile recule (déréglage de la position 530 mm)
- -risque de cisaillement au niveau de la butée fixe.

On se propose de vérifier tous ces éléments.

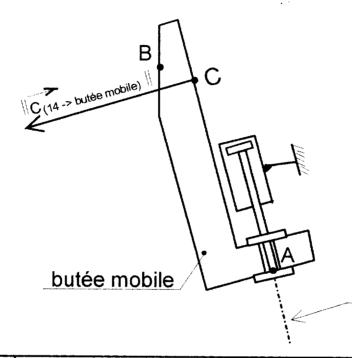
||F_C||=

Question 11	/ 8pts

D' après les données constructeur le moment du couple de la butée est de: 229 Nm Calculer l'intensité de l'effort $\overline{F_C}$ exercé par la butée mobile sur la butée d'excentrique et placer la force sur le dessin ci-dessous.

ENROULEUR A COURROIE

DOSSIER REPONSE DR 16/21


Déterminer graphiquement l'effort que le vérin subit: A (butée mobile -> vérin)

Hypothèses:-On suppose que les actions sont situées dans un même plan

-On ne tient pas compte du frottement.

Donnée : Nous prendrons pour la suite de l'étude:

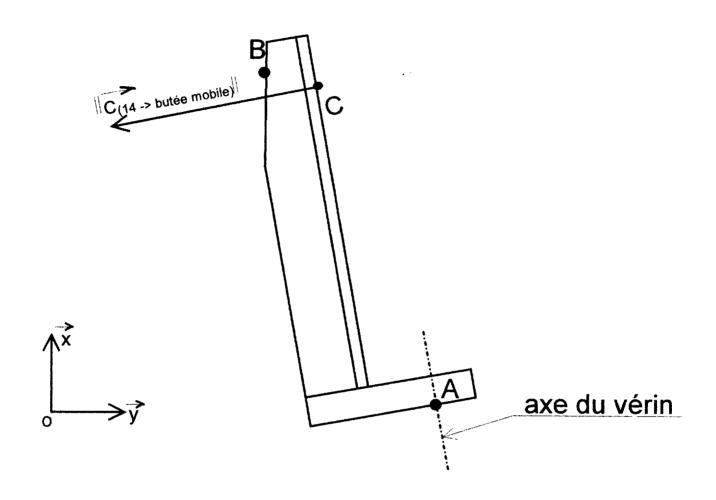
||C_(14 -> butée mobile)|| = 3600 N

axe du vérin

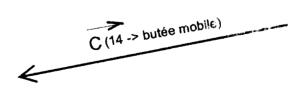
	Question 12	Compléter le tableau des caractéristiques	/ 7pts
1			

F extérieures	Pt d'application	direction	sens	intensité (N)
A (tige de vérin -> butée mobile)	Α	Axe du vérin		
C _(14-> butée mobile)	С	Donnée		
B ₍₂ -> butée mobile)	В			

Question 13	404
i Macepholi 19	/ 2pts
i i	, - pt0


En déduire graphiquement la direction de l'effort en B (doc 17/21)

Après construction du dynamique des forces, en déduire l'intensité des efforts extérieurs:


A (tige de vérin -> butée mobile) et B (2 -> butée mobile).

Epreuve E1A ENROULEUR A COURROIE	DOSSIER REPONSE DR 17/21
----------------------------------	-----------------------------

Echelle des Forces: 1 cm représente 500 N

Dynamique:

A (tige de vérin -> butée mobile) =	B _(2-> butée mobile)
	<u> </u>

0206-MSM ST A

Epreuve E1A ENROULEUR A COURROIE	DOSSIER REPONSE DR 18/21
----------------------------------	-----------------------------

Question 15	Etude du vérin		/ 4pts
		i i	•

Sachant que:

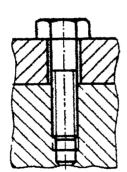
- le vérin: diamètre du piston: 16 mm

diamètre de la tige: 6 mm

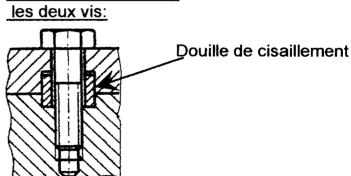
- Pression pneumatique: 9 bar (1 N/mm² = 1 MPa = 10 bar)

Calculer l'intensité de l'effort Fv exercé en Newton par le vérin lors du positionnement de la butée mobile:

1			
	Question 16	Comparatif	/ 2pts


Comparer l'intensité de l'effort Fv du vérin par rapport à l'effort subit (de l'ordre de 825 N), et en tirer des conclusions.

On remarque lors des comptes rendus de maintenance du système, des problèmes au niveau de la fixation de la pièce 2, rupture des vis de fixation.


Pour remédier à ce problème une amélioration va être apportée sachant que dans "les règles de l'art" une vis ne doit jamais travailler comme un obstacle.

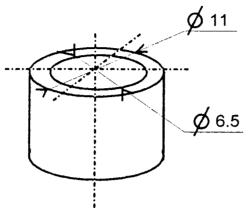
Une douille de cisaillement sera montée après modification à l'atelier.

Solution actuelle:

Nouvelle solution pour

On souhaite donc vérifier la résistance au cisaillement du nouveau montage.

Données: ||F|| = 3700 N (pour les deux vis 3)


Acier utilisé: Reg = 320 MPa Coefficient de sécurité: s = 8

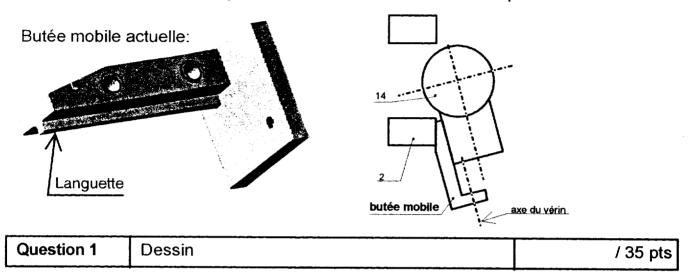
Formules: Contraintes $\mathcal{T} = \frac{T}{S} \leqslant Rpg = \frac{Reg}{s}$

ENROULEUR A COURROIE

DOSSIER REPONSE DR 19/21

Douille de cisaillement:

	i	
Question 17	Donner le nombre de sections cisaillées et déterminer l'aire de l'une de ces sections.	/ 3 pts
		
Question 18	Calculer la contrainte de cisaillement dans la douille.	/ 3 pts
		
Question 19	Calculer la résistance pratique au glissement: Rpg	/ 2 pts
Question 20	Ecrire la condition de résistance. Tirer des conclusions.	/ 3 pts


ENROULEUR A COURROIE

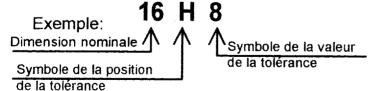
DOSSIER REPONSE DR 20/21

3ème PARTIE

Suite au problème de déréglage de la position "diamètre 530", le service maintenance est chargé de démonter la butée mobile et de la modifier à son extrémité afin d'obtenir un arrêt suivant l'axe du vérin, lorsque la butée mobile tente de reculer.

Le technicien maintenance chargé de cette tâche devra réaliser le dessin de définition de la nouvelle butée mobile, pour le transmettre au sous-traitant qui la réalisera.

Sur le document 21/21 format A4 horizontal compléter le dessin de définition de la butée mobile, en tenant compte de la modification à apporter, c'est à dire, un arrêt à l'extrémité de la butée pour ne plus avoir le problème de déréglage en translation suivant l'axe du vérin.

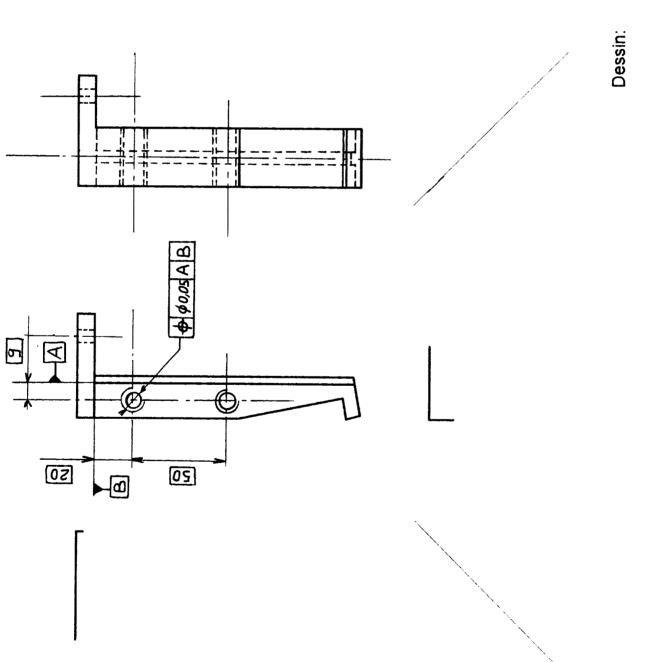

Echelle du dessin: 1:2

A partir des vues de face et de gauche, réaliser: -vue de droite

-vue de dessus

Question 2	Cotation (document 21/21)	/ 15 pts
L		

2.1. Installer sur le dessin de définition, la cote relative à la languette de largeur 5 mm Inscrire, la dimension nominale, le symbole de position ainsi que le symbole de la valeur de la tolérance.



- 2.2. Installer sans la chiffrer, la tolérance de position de la languette.
- 2.3. Décoder la tolérance de position des 2 trous taraudés débouchants.

Epreuve E1A	ENROULEUR A COURROIE	DOSSIER REPONSE DR 21/21
<u> </u>		

Ech: 1:2 Nb: 1 BUTEE MOBILE MODIFIEE (sans représentation des soudures)

Dessin: Cotation:

